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binatorial number theory. Recently in [9], Di Nasso proved 
symmetrized versions of some classical theorems like Hind-
man’s theorem, Van der Waerden’s theorem and Deuber’s 
theorem. This opens the question of which other classical 
theorems can be symmetrized, as well as if other symmetric 
operations allow for such generalizations. Here we give positive 
answers to both questions, by showing that symmetrization of 
the polynomial extension of Van der Waerden’s and Deuber’s 
Theorem is possible.
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1. Introduction

Throughout our article, let N be the set of all positive integers. For any r ∈ N, a 
r-coloring of a set X is a partition of X into r disjoint sets. A core problem in arithmetic 
Ramsey theory is the characterization of families F of subsets of a semigroup (S, ·) that 
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are partition regular, i.e. the families have the property that whenever S =
⋃r

i=1 Ai is a 
finite coloring of S, at least one of the Ai is in F . For any r-coloring of S, A ⊂ S will be 
called monochromatic if each member of A is in the same color. A cornerstone result in 
arithmetic Ramsey theory is van der Waerden’s theorem [25], which states that for any 
l, r ∈ N, and for any r coloring of N, there exists a monochromatic arithmetic progression 
(AP) of length l. Another important theorem was due to Schur [23] which states that for 
every finite coloring of N, there exists a monochromatic pattern of the form {x, y, x +y}. 
Passing to the map n → 2n, one can immediately prove the multiplicative version of 
the Schur theorem (which says {x, y, x · y} that is partition regular). Similarly, one can 
derive the multiplicative version of van der Waerden’s theorem, which says that for any 
l, r ∈ N, and for any r coloring of N, there exists a monochromatic geometric progression 
(GP) of length l. In [4], using the methods from Ergodic theory, V. Bergelson proved 
that for any finite coloring of Z, there exists a monochromatic geo-arithmetic progression 
(pattern of the form described in Theorem 1.1, can be thought as the combined extension 
of additive and multiplicative van der Waerden’s theorem) of arbitrary length. Later in 
[3], M. Beiglböck, V. Bergelson, N. Hindman and D. Strauss found an ultrafilter proof.

Theorem 1.1. [4,3] If n, r ∈ N, and Z is r-colored, then there exist a, b, and d ∈ N such 

that the set 
{
a · (b + i · d)j : 0 ≤ i, j ≤ n

}
is monochromatic.

For any set X, let Pf (X) be the collection of all nonempty finite subsets of X. Now 
we recall the notion of IP sets which plays an important role in Ramsey theory.

Definition 1.2 (IP Sets). Let (S, +) be a commutative semigroup. A set A ⊆ S is said to 
be an IP set if there exists an injective sequence 〈xn〉n∈N in S such that

A = FS (〈xn〉n∈N) =
{∑

n∈α

xn : α ∈ Pf (N)
}
.

For α ∈ Pf (N), we write xα =
∑

n∈α xn.

The following theorem is another cornerstone theorem in Ramsey theory, known as 
the Hindman theorem [16].

Theorem 1.3. For every finite coloring of Z, there exists a monochromatic IP set.

In [8], Deuber introduced the notion of (m, p, c)-sets and generalized the van der 
Waerden’s theorem.

Definition 1.4 ((m, p, c)-set). Let m, p, c ∈ N, and s = (s0, . . . , sm) ∈ (Z \ {0})m+1. Then 
the (m, p, c)-set generated by s is the set
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D (m, p, c, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cs0
i0s0 + cs1, i0 ∈ [−p, p]

i0s0 + i1s1 + cs2, i1, i0 ∈ [−p, p]
...

...
i0s0 + · · · + im−1sm−1 + csm, im−1, . . . , i0 ∈ [−p, p]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The following theorem is due to Deuber [8].

Theorem 1.5. [8] For any m, p, c ∈ Z, and for any finite coloring of Z, there exists a 
monochromatic (m, p, c)-set generated by some s ∈ (Z \ {0})m+1.

Polynomial extensions of classical Ramsey theoretical results are much harder to 
prove. A pioneering work in this direction is the Polynomial extension of the van der 
Waerden’s theorem, due to V. Bergelson and A. Leibman [17].

Theorem 1.6. [17] Let m ∈ N, and p1, p2, . . . , pm be polynomials with integer coefficients 
without constant terms. Then for any finite coloring of N, there exist natural numbers a
and d such that {a + pi (d) : 1 ≤ i ≤ m} is monochromatic.

In [6], V. Bergelson, J. H. Johnson Jr., and J. Moreira proved the polynomial ex-
tension of Theorem 1.5. Studying monochromatic patterns involving both additive and 
multiplicative structures is relatively new. A pioneering result in this field was due to V. 
Bergelson and N. Hindman in [5,17], where they independently proved that for any finite 
coloring of N, there exist monochromatic a, b, c, and d such that a + b = c · d. Next in 
2017, J. Moreira [5] proved that the family containing patterns of the form {a, a + b, a · b}
is partition regular. Later in 2019, J.M. Barrett, M. Lupini and J. Moreira [1] proved 
that the family containing patterns of the form {a, a + b, a + b + a · b} is partition reg-
ular. For a brief history of additive and multiplicative structures, authors can see the 
article [20] of J. Moreira.

Recently in [9], by introducing the notions of “symmetric polynomials”, M. Di Nasso 
found many new additive and multiplicative monochromatic patterns.

Definition 1.7 (Symmetric structure). For any n ∈ N, and any (x1, x2, . . . , xn) ∈ Nn

a structure P (x1, x2, . . . , xn) is called symmetric structure if P (x1, x2, . . . , xn) =
P (xi1 , xi2 , . . . , xin) for any (i1, i2, . . . , in) ∈ Sn, where Sn is the set of all permutation 
of {1, 2, . . . , n}.

If P (x1, x2, . . . , xn) is a polynomial, then this structure is called symmetric polyno-
mial.

For example, P (x, y) = x +y+xy is a symmetric polynomial. In [9], M. Di Nasso found 
monochromatic patterns arising from symmetric polynomials. The following theorem is 
Deuber’s theorem for symmetric polynomials.



4 A. Chakraborty, S. Goswami / Bull. Sci. math. 192 (2024) 103415
Theorem 1.8. [9, Theorem 2.9] Let l and k be two integers where l divides k − 1, and 
let m, L, r ∈ N. Then for every finite coloring Z = ∪r

i=1Ci, there exist a color i ∈
{1, 2, . . . , r}, and elements a0, . . . , am ∈ Ci such that for every j = 1, 2, . . . , m, and for 
all n0, . . . , nj−1 ∈ {0, 1, . . . , L},

1
l

(
(laj + k)

j−1∏
s=0

(las + k)ns − k

)
∈ Ci.

Here we can assume that (laj + k) 
= 0, 1, −1 for all j ∈ {1, 2, . . . , m}.

Inspired by Di Nasso’s work, in Section 3, we address the problem of generalizing 
the polynomial versions of important classical results, particularly polynomial van der 
Waerden’s Theorem 1.6 and polynomial Deuber theorem [6, Theorem 4.9] for symmetric 
polynomials.

In section 4, we study two new Operations involving both exponential as well as 
symmetric Patterns.

2. Preliminaries

In this section, we recall some results which are necessary for our work. In section 2.1, 
we recall the Hales-Jewett theorem and one of its variants. In section 2.2, we recall the 
algebraic structure of the Stone-Čech compactification of discrete semigroups that we 
use in section 3.3. In section 2.3, we recall the �l,k operation and some basic facts about 
it. This operation has been introduced by M. Di Nasso in [9], a very useful operation to 
find out symmetric Ramsey theoretic patterns.

2.1. Hales-Jewett theorem

Let ω = N∪{0}. Given a nonempty set A called alphabet, a finite word is an expression 
of the form w = a1a2 . . . an with n ≥ 1, and ai ∈ A for all i ∈ {1, 2, . . . , n}. The quantity 
n is called the length of w, and denoted by |w|. Let v (a variable) be a letter not belonging 
to A. By a variable word over A, we mean a word w over A ∪ {v} that has at least one 
occurrence of v. For any variable word w, w (a) is the result of replacing each occurrence 
of v by a.

For any two sets A, B and any function f : A → B, Dom (f) is the domain of the 
function f . A located word α is a function from a finite set Dom(α) ⊆ N to A. The set 
of all located words will be denoted by L (A). Note that for located words α, β satisfying 
Dom (α) ∩ Dom (β) = ∅, α ∪ β is also a located word. The following theorem is known 
as the Hales-Jewett theorem.

Theorem 2.1. [15, Hales-Jewett Theorem (1963)] For any t, r ∈ N, there exists a number 
HJ (r, t) such that, if N ≥ HJ (r, t) and [t]N is r colored then there exists a variable word 
w such that {w (a) : a ∈ [t]} is monochromatic.
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The word space [t]N is called Hales-Jewett space or H-J space. The number HJ (r, t)
is called the Hales-Jewett number. Let us recall the following variant of the Hales-Jewett 
theorem due to M. Beiglböck in [2].

Theorem 2.2. [2, Theorem 3] Let F be a partition regular family of finite subsets of N
which contains no singletons, and let A be a finite alphabet. For any finite coloring of 
L (A) there exist α ∈ L (A) , γ ∈ Pf (N) and F ∈ F such that Dom (α) , γ and F are 
pairwise disjoint and

{α ∪ (γ ∪ {t}) × {s} : s ∈ A, t ∈ F}

is monochromatic.

In [7], using the methods from topological dynamics, V. Bergelson and A. Leibman 
proved the polynomial extension of the Hales-Jewett Theorem. Then in [26], M. Walter 
proved it combinatorially. This theorem uses some special notation, which we will state 
now.

For q, N ∈ N, Q = [q]N , ∅ 
= γ ⊆ [N ] and 1 ≤ x ≤ q, a ⊕ xγ is defined to be the 
vector b in Q obtained by setting bi = x if i ∈ γ and bi = ai otherwise. In the statement 
of Theorem [26], we have a ∈ Q so that a = 〈�a1, �a2, . . . , �ad〉 where for j ∈ {1, 2, . . . d}, 
�aj ∈ [q]Nj and we have γ ⊆ [N ] = {1, 2, . . . , N}. Given j ∈ {1, 2, . . . , d}, let �aj =
〈aj,�i〉�i∈Nj . Then a ⊕ x1γ ⊕ x2(γ × γ) ⊕ . . .⊕ xdγ

d = b where b = 〈�b1, �b2, . . . , �bd〉 and for 
j ∈ {1, 2, . . . , d}, �bj = 〈bj,�i〉�i∈Ni where

bj,�i =
{

xj if�i ∈ γi

aj,�i otherwise.

Theorem 2.3. [26, Polynomial Hales-Jewett Theorem] For any q, k, d ∈ N, there exists 
N ∈ N such that whenever Q = Q (N) = [q]N × [q]N×N × · · · × [q]N

d

is k-colored, there 
exist a ∈ Q and γ ⊆ [N ] such that the set of points

{
a⊕ x1γ ⊕ x2 (γ × γ) ⊕ · · · ⊕ xdγ

d : 1 ≤ xi ≤ q
}

is monochromatic.

2.2. Preliminaries of the algebra of ultrafilters

For any discrete semigroup (S, ·), let βS be the Stone-Čech compactification of S. 
The operation “·” on S naturally extends over βS as: for any p, q ∈ βS, A ∈ p · q if and 
only if {x : x−1A ∈ q} ∈ p. With this operation “·”, (βS, ·) is a compact Hausdorff right 
topological semigroup. Hence Ellis theorem guarantees that there exist idempotents in 
(βS, ·). It can be shown that every member of the idempotents of (βS, ·) contains an IP
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set, that means every idempotent witnesses Hindman’s theorem. Using Zorn’s lemma 
one can show that (βS, ·) contains minimal left ideals (minimal w.r.t. the inclusion). A 
well known fact is that the union of such minimal left ideals is a minimal two sided ideal, 
denoted by K(βS, ·). Here we recall a few well-known classes of sets that are relevant for 
our work. For details readers can see [19].

Definition 2.4. Let (S, ·) be a semigroup, let n ∈ N and let A ⊆ S. We say that

• A is a thick set if for any finite subset F ⊂ S, there exists an element x ∈ S such 
that Fx = {fx : f ∈ F} ⊂ A;

• A is a syndetic set if there exists a finite set F ⊂ S such that S =
⋃

x∈F x−1A, where 
x−1A = {y : xy ∈ A};

• A is piecewise syndetic if there exists a finite set F ⊂ S such that 
⋃

x∈F x−1A is 
a thick set. It is well known that A is piecewise syndetic if and only if there exists 
p ∈ K(βS, ·) such that A ∈ p.

• A is central if it belongs to a minimal idempotent in βS.

Minimal idempotents play an important role in Ramsey theory. In [12], Furstenberg 
proved the Central Sets Theorem, the joint extension of van der Waerden’s theorem and 
Hindman’s theorem. In [18] N. Hindman and R. McCutcheon proved the polynomial 
extension of Central Sets Theorem. In [6], the authors found the polynomial extension 
of Theorem 1.5. Before we state their result we need the following definition of the 
polynomial extension of D(m, p, c) sets from [6].

Definition 2.5. [6, Definition 3.1.] Let m ∈ N, c : G → G be a homomorphism, and 
F = (F1, . . . , Fm) be an m-tuple, where each Fj is a finite set of functions from Gj to 
G. For s = (s0, . . . , sm) ∈ (G \ {0})m+1, the (m,F, c)-set generated by s is the set

D (m,F, c, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c (s0)
f (s0) + c (s1) f ∈ F1

f (s0, s1) + c (s2) f ∈ F2
...

...
f (s0, . . . , sm−1) + c (sm) f ∈ Fm

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

The original theorem is very abstract, but here we mention a special case of [6, The-
orem 4.9] which asserts polynomial Deuber’s theorem over Z.

Theorem 2.6. [6, Polynomial Deuber’s Theorem] Let l, k, and m ∈ N, and c ∈ Z, and 
A ⊆ Z be a central set. For 1 ≤ i ≤ m, let Fi ⊆ P

((
Zi,+

)
, (Z,+)

)
be a finite collection 

of polynomials from (Zi, +) to (Z, +) with no constant term. Then there exists an IP -set 
〈Sα〉α∈P (N) in 

(
Zm+1,+

)
such that D (m,F, c, sα) ⊆ A.
f
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2.3. A new symmetric operation

After lifting the multiplicative operation over the affine space via an isomorphism, in 
[9], Di Nasso introduced a new symmetric operation over Z, that we will discuss soon. 
In this subsection, we describe this operation briefly. First, we need to recall some basic 
facts from [9].

Definition 2.7 (Elementary symmetric polynomial). For j = 1, 2, . . . , n, the elementary 
symmetric polynomial in n variables is the polynomial:

ej (X1, X2, . . . , Xn) =
∑

1≤i1≤...≤ij≤n

Xi1Xi2 · · ·Xij =
∑

∅�=G⊆{1,...,n}

∏
s∈G

Xs.

For all a1, . . . , an, the product 
∏n

j=1 (aj + 1) =
∑n

j=1 ej (a1, . . . , an) + 1, and so

c =
n∑

j=1
ej (a1, . . . , an) ⇐⇒

n∏
j=1

(aj + 1) = (c + 1) .

More generally, for l, k 
= 0 it can be easily verified that

n∏
j=1

(laj + k) = lc + k ⇐⇒ c =
n∑

j=1
lj−1kn−jej (a1, . . . , an) + kn − k

l
.

If k, l ∈ N, then c ∈ Z if and only if l|k (k − 1).
The function Gl,k (·) in the next definition is precisely the same as the value of c in 

Definition 2.7, which gives a justification for our attention to this function.

Definition 2.8 ((l, k)-symmetric polynomial). For l, k ∈ Z with l, k 
= 0 the (l, k)-
symmetric polynomial in n variables is

Gl,k (X1, X2, . . . , Xn) =
n∑

j=1
lj−1kn−jej (X1, X2, . . . , Xn) + kn − k

l

=
∑

∅�=G⊆{1,...,n}

(
l|G|−1kn−|G| ·

∏
s∈G

Xs

)
+ kn − k

l
.

In the following definition, the function Gl,k (·) is extended to a sequence.

Definition 2.9. Let 〈xn〉∞n=1 be an infinite sequence, and let l, k ∈ Z with l, k 
= 0. The 
corresponding (l, k)-symmetric system is the set:

Gl,k (xn)∞n=1 = {Gl,k (xn1 , xn2 , . . . , xns
) | n1 < n2 < · · · < ns} .
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Definition 2.10. For l, k ∈ Z where l 
= 0 divides k (k − 1), define

a �l,k b = c ⇐⇒ (la + k) (lb + k) = (lc + k) .

So,

c = a �l,k b = 1
l

[(la + k) (lb + k) − k] = lab + k (a + b) + k2 − k

l
.

Clearly, c ∈ Z if and only if l divides k2 − k = k (k − 1).

In [9, Theorem 2.4], M. Di Nasso proved following symmetrization of the Hindman 
theorem.

Theorem 2.11 (Symmetric Hindman theorem). Assume that l, k 
= 0 are integers where l
divides k (k − 1). Then for every finite coloring Z = C1 ∪ . . .∪Cr there exist an injective 
sequence 〈xn〉∞n=1 of integers, and a color Ci such that Gl,k (xn)∞n=1 ⊆ Ci.

More generally, for every injective sequence of integers 〈xn〉∞n=1 and for every finite 
coloring Gl,k (xn)∞n=1 = C1 ∪ . . .∪Cr of the corresponding (l, k)-symmetric system, there 
exist an injective sequence of integers 〈xn〉∞n=1 and a color Ci such that Gl,k (yn)∞n=1 ⊆ Ci.

Moreover, for positive l ∈ N, the above partition regularity properties are also true if 
we replace the integers Z with the natural numbers N.

Note that for any integers l 
= 0,

1. a �l,0 b = lab;
2. Gl,0 (a1, a2, . . . , an) = a1 �l,0 · · · �l,0 an = ln−1a1 · · · an.

The iterated �l,k-products are exactly the functions defined in Definition 2.8. To 
verify this fact we recall the following proposition from [9].

Proposition 2.12. Let l, k ∈ Z be such that l 
= 0 divides k (k − 1). Then for all 
a1, . . . , an ∈ Z,

a1 �l,k · · · �l,k an =
∑

∅�=G⊆{1,...,n}

(
l|G|−1kn−|G| ·

∏
s∈G

as

)
+ kn − k

l

=
n∑

j=1
lj−1kn−jej (a1, a2, . . . , an) + kn − k

l

= Gl,k (a1, a2, . . . , an) .

Fact 2.13. For any a, b, d ∈ Z, and for i ∈ N,

b �l,k (a + id) = y + iz
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where y = l (ab + bk + ak) + k2−k
l and z = l2bd + kld.

Now, we introduce some new notations which we use in section 3.3.

Definition 2.14. Let l, k 
= 0 be integers where l divides k (k − 1). Let 〈an〉∞n=1 be an 
injective sequence in Z, 〈Hn〉∞n=1 be a sequence in Pf (N), and B = {xn : n ∈ N}. Then 
we define the following notations:

1. If α = {i1, i2, . . . , im} ∈ Pf (N) with i1 < i2 < · · · < im, then a<α =
Gl,k(ai1 , ai2 , . . . , aim).

2. For α ∈ Pf (N), Hα =
⋃

i∈α Hi.
3. If FS 〈yn〉∞n=1 be a sub-IP set of FS 〈xn〉∞n=1, then for any β =∈ Pf (N), if yβ =∑p

j=1 xij for some {ij : j = 1, . . . , p}, then define

y
<(B)
β = Gl,k

(
xi1 , xi2 , . . . , xip

)
.

We call the sequence B a base sequence.

3. Polynomial extension of symmetric configurations

As promised, now we are in the position to provide a proof of symmetric version of 
Theorem 1.1 using Theorem 2.2. Then we prove the symmetric version of the polynomial 
van der Waerden’s Theorem 1.6 with the help of the polynomial Hales-Jewett Theorem. 
Later in section 3.3, we prove symmetric version of the polynomial Deuber’s theorem.

3.1. Symmetric version of the monochromatic geo-arithmetic progressions

The following theorem is the symmetric version of the Theorem 1.1.

Theorem 3.1. Let k, l(
= 0), r ∈ Z with l|k(k − 1). Then for any r-coloring of Z, and for 
each m ∈ N, there exist x, y, z ∈ Z such that

{
1
l

[
(lx + k) (l (y + iz) + k)j − k

]
: i, j ∈ {0, 1, . . . ,m}

}

is monochromatic.

Proof. Let F = {{a, a + d, . . . , a + kd} : a, d ∈ Z} be the set of all (k + 1)-terms arith-
metic progressions. Clearly, F is a partition regular family over Z. Choose A =
{0, 1, . . . ,m}, and define f : L (A) → N by f (α) = �l,k

t∈Dom(α)
t(α(t)). Color each α ∈ L (A)

with the color of f (α).
Using Theorem 2.2 and the fact 2.13, choose α, γ ∈ L (A), and F ∈ F such that for 

all i, j ∈ {0, 1, . . . ,m}, we have
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f (α ∪ (γ ∪ {a + id}) × {j})

= �l,k
t∈Dom(α)

t(α(t))
�l,k �l,k

t∈γ

t(j) �l,k (a + id)(j)

= x �l,k b(j) �l,k (a + id)(j) ,where b = �l,k
t∈γ

t

= x �l,k (b �l,k (a + id))(j)

= x �l,k (y + iz)(j)

is monochromatic for some y, z ∈ Z.
But c = x �l,k (y + iz)(j) = 1

l

[
(lx + k) (l (y + iz) + k)j − k

]
. This completes the 

proof �
Suppose (l, k) = (1, 0), then the Theorem 3.1 implies Theorem 1.1. The following 

example gives us a nontrivial application of Theorem 3.1.

Example 3.2. If (l, k) = (2, 1), then the pattern

{
1
2

[
(2x + 1) (2 (y + iz) + 1)j − 1

]
: i, j ∈ {0, 1, . . . ,m}

}

=
{

1
2

[
(2x + 1) ((2y + 1) + iz)j − 1

]
: i, j ∈ {0, 1, . . . ,m}

}

is monochromatic.

3.2. Symmetric version of the polynomial Van der Waerden’s theorem

The following theorem is symmetric version of the polynomial van der Waerden’s 
Theorem.

Theorem 3.3. Let d, k, l, m ∈ N where l|k(k− 1), and 
{
a(i) =

(
a
(i)
1 , a

(i)
2 , . . . , a

(i)
d

)}m

i=1
⊆

Z \
{
−k

l ,−
k+1
l

}
. Then for any finite coloring of Z there exist e, c ∈ N such that

⎧⎨
⎩1

l

⎡
⎣(le + k)

d∏
j=1

(
la

(i)
j + k

)cj
− k

⎤
⎦
⎫⎬
⎭

m

i=1

is monochromatic.

Proof. Let q =
{
a
(i)
1 , a

(i)
2 , . . . , a

(i)
m

}d

i=1
, and N = PHJ (q, r, d). Our r-coloring on Z \{

−k
l ,−

k+1
l

}
induces a r-coloring on [q]N × [q]N×N × . . . × [q]N

d

via the mapping IM :
a1a2 . . . aR → a1 �l,k a2 �l,k · · ·�l,k aR. Let A ⊆ Z be a piecewise syndetic set. So, there 
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exists a finite set E such that E−1A is thick. Note that the set Q (N) is finite. It is a 
routine exercise to check that the set {s : IM (Q (N)) + s ⊆ E−1A} is infinite. Hence we 
can translate IM(Q (N)) by an element t ∈ Z \

{
−k

l ,−
k+1
l

}
such that IM (Q (N))+ t ⊆

E−1A. For x, y ∈ Q (N), x, y are in same color if and only if {Im (x)+t, Im (y)+t} ⊂ t−1
1 A

for some t1 ∈ E. Hence by Theorem 2.3, we have a monochromatic combinatorial line of 
the form

{
a⊕ x1γ ⊕ x2 (γ × γ) ⊕ . . .⊕ xdγ

d : 1 ≤ xi ≤ q; 1 ≤ i ≤ d
}
.

Now, each a ⊕ x1γ ⊕ x2 (γ × γ) ⊕ . . .⊕ xdγ
d is mapped to

t + t1 �l,k b1 �l,k b2 �l,k . . . �l,k bs �l,k x
(|γ|)
1 �l,k x

(
|γ|2

)
2 �l,k . . . �l,k x

(
|γ|d

)
d ,

where xi ∈ [q], for all i ∈ {1, 2, . . . , d}.
Let d = t + t1 �l,k t �l,k b1 �l,k b2 �l,k . . .�l,k bs, and therefore the other patterns are of 

the form d �l,k x
(|γ|)
1 �l,k x

(
|γ|2

)
2 �l,k . . .�l,k x

(
|γ|d

)
d where xi ∈ [q], for all i ∈ {1, 2, . . . , d}.

Now,

d �l,k x
(|γ|)
1 �l,k x

(
|γ|2

)
2 �l,k . . . �l,k x

(
|γ|d

)
d

= 1
l

(
(le + k) (lx1 + k)c (lx2 + k)c

2
. . . (lxd + k)c

d

− k
)
,

where xi ∈ [q], for all i ∈ {1, 2, . . . , d}.
This proves the theorem. �
The following application of Theorem 3.3 is nontrivial.

Example 3.4. Let (l, k) = (3, 1) and n ∈ N. Let the finite sequence 
〈
a(i)〉n

i=1 be defined 
by: for i ∈ {1, 2, . . . , n}, a(i) = (0, 0, . . . , 1, . . . , 0), where 1 is at the ith coordinate.

Then by Theorem 3.3, there exist x, y ∈ N such that

{
1
3 ((3x + 1) 4y − 1) , 1

3

(
(3x + 1) 4y

2 − 1
)
, . . . ,

1
3

(
(3x + 1) 4y

n − 1
)}

is monochromatic.

3.3. Symmetric version of the polynomial Deuber’s theorem

In this section we study the polynomial maps from (Z,+) to (Z,�l,k). As both 
(Z,+) and (Z,�l,k) are abelian groups, we can define group polynomials from (Z,+) to 
(Z,�l,k). Let us recall the definition of group polynomials.
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Definition 3.5 (Polynomial map). [6] Given a map f : H → G between countable com-
mutative groups, we say that f is a polynomial map of degree 0 if it is constant. We 
say that f is a polynomial map of degree d, where d ∈ N, if it is not a polynomial map 
of degree d − 1 and for every h ∈ H, the map x �→ f (x + h) − f (x) is a polynomial of 
degree ≤ d − 1. Finally we denote by P (G, H) the set of all polynomial maps f : H → G

with f (0) = 0.

One can easily check that a map from (Zm,+) to (Z,�l,k) with m variables, and 
degree n given by

P (x1, x2, . . . , xm) = �l,k
i1+i2+···+im≤n

α

(
x
i1
1 x

i2
2 ···xim

m

)
i1i2···im .

is a polynomial map. As (Z,+) and (Z,�l,k) are two different groups, we cannot apply [6, 
Theorem 4.9.] directly to conclude polynomial Deuber’s Theorem for polynomials from 
(Z, +) to (Z,�l,k). So we need a different version of the polynomial Deuber’s Theorem. 
Before that, let us define the notion of symmetric D (m, p, c)-set.

Definition 3.6. (Symmetric D (m, p, c)-set) Let m ∈ N, and �F be an m-tuple {F1, F2, . . . ,
Fm}, where Fi ⊆ P

((
Zi,+

)
, (Z,�l,k)

)
for each i ∈ {1, 2, . . . , m}. Then for any given 

IP -set 〈Sα〉α∈Pf (N) ⊆ (Z \ {0})m+1 and a collection of m + 1 base sequences B =
{B0, B1, . . . , Bm}, define

D
(
m, �F ,�l,k, S

<
α , B

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gl,k

(
S
<(B0)
α,0

)
Gl,k

(
S
<(B1)
α,1 , f (Sα,0)

)
f ∈ F1

Gl,k

(
S
<(B2)
α,2 , f (Sα,0, Sα,1)

)
f ∈ F2

...
...

Gl,k

(
S
<(Bm)
α,m , f (Sα,0, . . . , Sα,m−1)

)
f ∈ Fm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We need the following corollary of [6, Theorem 4.10.].

Corollary 3.7. Let 〈yα〉α∈F be an IP -set in (Z,+), F ⊆ P ((Z,+) , (Z,�l,k)) be finite, 
and A ⊆ (Z,�l,k) be central. Then there exist a sequence 〈xn〉∞n=1 in (Z,�l,k) and a 
sub-IP set 〈zβ〉β∈F of 〈yα〉α∈F such that for all f ∈ F , and for all β ∈ F we have

Gl,k

(
x<
β , f (zβ)

)
∈ A.

Proof. By Theorem [6, Theorem 4.10.], there exists such a sequence and for all β ∈ F ,

xβ �l,k f (zβ) = Gl,k

(
x<
β , f (zβ)

)
∈ A. �
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Now we are in position to prove the symmetric version of Theorem 2.6.

Theorem 3.8. Let l, k, m ∈ Z, and Z = ∪r
i=1Ci be any finite coloring of Z. For 1 ≤ i ≤ m, 

let Fi ⊆ P
((
Zi,+

)
, (Z,�l,k)

)
be a finite collection of polynomials. Then there exist 

j ∈ {1, 2, . . . , r}, an IP -set 〈Sα〉α∈Pf (N) in 
(
Zm+1,+

)
and a collection of m + 1 base 

sequences B = {B0, B1, . . . , Bm} such that for all α ∈ Pf (N)

D
(
m, �F ,�l,k, S

<
α , B

)
⊂ Cj .

Remark 3.9. In Theorem 3.8 if each Fi is identity polynomial, then for all j ∈
{1, 2, . . . ,m}, we have Gl,k

(
S
<(Bj)
α,j

)
∈ Ci.

Proof. (Proof of Theorem 3.8:) To avoid complicated calculations, we will only show 
the first two steps. One can complete the rest of the proof similarly. Suppose that Ci

is central for some i ∈ {1, 2, . . . , r}. Hence there exists an injective sequence 〈xn,0〉∞n=1
such that Gl,k (xn,0)∞n=1 ⊂ Ci. Passing to a subsequence, we can assume that the finite 
sums are distinct; i.e. xα,0 
= xβ,0 if α 
= β.

Let B0 = {xn,0 : n ∈ N} ⊆ Ci. From Corollary 3.7, we have a sub-IP -set 
FS

(
〈yn,0〉∞n=1

)
of FS

(
〈xn,0〉∞n=1

)
and an injective sequence B1 = {xn,1 : n ∈ N} such 

that for all f ∈ F1, and β ∈ Pf (N), Gl,k

(
x
<(B1)
β,1 , f (yβ,0)

)
∈ Ci.

Again passing to a subsequence if necessary, assume that xα,1 
= xβ,1 if α 
= β. So, 
we have an IP -set Sα = (Sα,0, Sα,1), and two base sequences B0, B1 such that for all 
f ∈ F1, and α ∈ Pf (N) we have

Gl,k

(
S
<(B0)
α,0

)
∈ Ci and

Gl,k

(
S
<(B1)
α,1 , f (Sα,0)

)
∈ Ci.

Let Sn = (Sn,0, Sn,1) = (yn,0, xn,1). From Corollary 3.7, there exist a sub-IP -
set FS

(
〈S′

n〉
∞
n=1

)
of Sα and an injective sequence B2 = {xn,2 : n ∈ N} such that for 

all f ∈ F2 and β ∈ Pf (N), Gl,k

(
x
<(B2)
β,2 , f

(
S′
β

))
∈ Ci. Again passing to a sub-

sequence if necessary we may assume xα,2 
= xβ,2 if α 
= β. So, we have an IP -set 
Sα = (Sα,0, Sα,1, Sα,2), and three base sequences B0, B1, B2 such that for all f ∈ F2, and 
α ∈ Pf (N) we have

Gl,k

(
S
<(B0)
α,0

)
∈ Ci,

Gl,k

(
S
<(B1)
α,1 , f (Sα,0)

)
∈ Ci and

Gl,k

(
S
<(B2)
α,2 , f (Sα,0, Sα,1)

)
∈ Ci.

Here, Sα = (Sα,0, Sα,1, Sα,2) =
(
S′
α,0, S

′
α,1, bα,2

)
. Iterating this argument we have the 

desired result. �
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The following examples of partition regular structures are new.

Example 3.10. Let m, n ∈ N, (l, k) = (1, 0) and 〈aj〉nj=1 ⊆ N. Then for any finite partition 
of Z, there exist k ≥ m and numbers x, b1, b2, . . . , bk such that

{
x, b1, b2, . . . , bk,

k∏
i=1

bi,
{
x ·
(
a
∑k

i=1 bi
j

)}n

j=1

}

is monochromatic.

Example 3.11. For any M ∈ N, and for any finite partition of Z, there exist m, n, p ≥ M , 
and finite sequences 〈ai〉mi=1, 〈bj〉

n
j=1 and 〈cq〉pq=1 such that

⎧⎨
⎩

m∏
i=1

ai,
n∏

j=1
bj ,

p∏
q=1

cq,
n∏

j=1
bj · 2

∑m
i=1 ai ,

n∏
j=1

bj · 3
∑m

i=1 ai ,

p∏
q=1

cq · 2
(∑m

i=1 ai

)(∑n
j=1 bj

)
,

p∏
q=1

cq · 3
(∑m

i=1 ai

)(∑n
j=1 bj

)}

is monochromatic.

4. A new approach to additive and multiplicative operation

In this section, we address patterns involving exponential and symmetric structures. 
In [24], A. Sisto initiated the study of exponential patterns in Ramsey theory. He proved 
that for any 2-coloring of N, one of the cells contains the pattern of the form {x, y, xy} and 
then he conjectured that for any finite coloring, there exists a monochromatic copy of the 
form {x, y, xy}. Finally, in [21], J. Sahasrabudhe proved this conjecture combinatorially, 
and then in [10], authors found an ultrafilter proof. Subsequent developments have been 
done in [22,11]. In [13], the authors found several new proof of these results, including 
a detailed introduction to exponential ultrafilters. Then in [14], some refinements have 
been made. These works inspire us to introduce two new operations over N. Both these 
operations are deeply related to exponentiation of symmetric patterns.

4.1. A new additive operation

For n ∈ N, define the function f : N → ω by f (n) = max {x : 2x|n}. If n ∈ N, then 
n = 2xn (2yn − 1), where xn = f (n). It is easy to verify that the function ϕ : N → ω×N

defined by

ϕ (n) = (xn, yn) =
(
f (n) , 1 ( n

f(n) + 1
))

,
2 2
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is a bijection.
Take the commutative semigroup (ω ×N,+), where the operation + is defined as 

(a, b) + (c, d) = (a + b, c + d). Then the bijection ϕ induces an associative operation 
⊕ on N, defined by p = m ⊕ n ⇐⇒ p = 2f(m)+f(n) ( m

2f(m) + n
2f(n) + 1

)
. Now define 

m ⊕ n = 2f(m)+f(n) ( m
2f(m) + n

2f(n) + 1
)
.

It can be easily seen that

a1 ⊕ a2 ⊕ · · · ⊕ an = 2
∑n

i=1 f(ai)

(
n∑

i=1

ai
2f(ai)

+ (n− 1)
)
.

The following theorem addresses monochromatic exponential and symmetric patterns.

Theorem 4.1. Let r ∈ N and a1, a2, . . . , an be distinct natural numbers. Then for every 
r-coloring of N, there exist x, y and c in N such that{

x2cf(a)
(
y + c

a

2f(a)

)
: a ∈ {a1, a2, . . . , an}

}

is monochromatic.

Proof. Let A = {a1, a2, . . . , an} and r ∈ N. Then choose the Hales-Jewett number 
N = N (A, r).

Now consider the word space AN , and take the correspondence map g : AN → N

defined by

g (a1, a2, . . . , aN ) = a1 ⊕ a2 ⊕ · · · ⊕ aN = 2
∑N

i=1 f(ai)

(
N∑
i=1

ai
2f(ai)

+ (N − 1)
)
.

Now every r-partition on N induces a r-partition on AN . Then from Hales-Jewett 
theorem and above configuration, there exist c, x, y ∈ N such that{

x2cf(a)
(
y + c

a

2f(a)

)
: a ∈ A

}

is monochromatic. �
The following examples are new.

Example 4.2. For two odd primes p, q, consider the numbers pq, 2p and 2q. Now f (pq) =
0, f (2p) = f (2q) = 2 and pq

2f(pq) = pq, p
2f(p) = p and q

2f(q) = q.
Then for any r-partition of N, there exist c, x, y ∈ N such that

{x (y + cpq) , 2cx (y + cp) , 2cx (y + cq)}

is monochromatic.
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Example 4.3. For an odd prime p, consider the numbers 23p, p3. Now f
(
p3) =

0, f
(
23p

)
= 3 and p3

2f
(
p3

) = p3, 23p

2f
(
23p

) = p. Then for any r-partition of N, from the 

above theorem there exist c, x, y ∈ N such that

{
x
(
y + cp3) , x23c (y + cp)

}
.

is monochromatic. Let a = xy, and b = xc. Then for any r-partition of N, from the 
above theorem there exist c, a, b ∈ N such that

{
a8c + bp, a + bp3}

is monochromatic.

4.2. A new multiplicative operation

Consider the set ω×2N, and the binary operation “·” on ω×2N, where the operation 
“·” is defined as component wise multiplication. Then (ω × 2N, ·) forms a commutative 
semigroup. Again each n ∈ N can be written as n = 2xn (2yn − 1) in a unique way, 
where xn = f (n). So, the function ρ : N → ω × 2N is defined by

ρ (n) = (xn, 2yn) =
(
f (n) , n

2f(n) + 1
)

is a bijection and it induces an associative operation ⊗ on N, defined by, p = m ⊗n ⇐⇒
p = 2f(m)·f(n) ·G1,1

(
m

2f(m) ,
n

2f(n)

)
. Define m ⊗ n = 2f(m)·f(n) ·G1,1

(
m

2f(m) ,
n

2f(n)

)
.

It can be easily verified that

a1 ⊗ a2 ⊗ · · · ⊗ an = 2
∏n

i=1 f(ai) ·G1,1

( a1

2f(a1)
,

a2

2f(a2)
, . . . ,

an
2f(an)

)
.

The following theorem is a variant of Theorem 4.1. and addresses new patterns.

Theorem 4.4. Let r ∈ N and a1, a2, . . . , an be distinct natural numbers. Then for every 
r-coloring of N, there exist x, y and c in N such that

{
x2f(a)cG1,1

(
y,
( a

2f(a)

)(c)
)

: a ∈ {a1, a2, . . . , an}
}

is monochromatic.

Proof. Let A = {a1, a2, . . . , an} and r ∈ N. Then choose the Hales-Jewett number 
N = N (A, r).

Now consider the word space AN and take the correspondence map g : AN → N

defined by,
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g (a1, a2, . . . , aN ) = a1 ⊗ a2 ⊗ · · · ⊗ aN = 2
∏N

i=1 f(ai)G1,1

( a1

2f(a1)
,

a2

2f(a2)
, . . . ,

aN
2f(aN )

)
.

Now every r-partition on N induces a r-partition on AN . Let c be the number of 
variable positions. Let d = N − c, then consider

y = G1,1

(
b1

2f(b1)
,

b2
2f(b2)

, . . . ,
bd

2f(bd)

)

and x =
∏d

i=1 f (bi), where b′is are the in non-variable positions. Then, from the Hales-
Jewett Theorem 2.1 and the above expression,

{
x2f(a)c ·G1,1

(
y,
( a

2f(a)

)(c)
)

: a ∈ A

}

is monochromatic. �
The following two examples are immediate consequence of Theorem 4.4.

Example 4.5. Let n, r ∈ N and p1, p2, . . . , pn be different odd primes. Then for any 
r-coloring of N, there exist x, z, c ∈ N such that

{xz · (pi + 1)c − x : i ∈ {1, 2, . . . , n}}

is monochromatic.

Example 4.6. Let n, r ∈ N and p be an odd prime. Then for any r-coloring of N, there 
exist x, z, c ∈ N such that{

xz ·
(
pi + 1

)c − x : i ∈ {1, 2, . . . , n}
}

is monochromatic

Declaration of competing interest

We don’t have any competing interest with anyone.

Data availability

No data was used for the research described in the article.

Acknowledgements

We are thankful to the referee for his/her comments on the previous draft of this 
article. The authors are indebted to Prof. Lorenzo Luperi Baglini for several important 



18 A. Chakraborty, S. Goswami / Bull. Sci. math. 192 (2024) 103415
discussions and his valuable feedback and suggestions on earlier drafts of this article, 
which improved the exposition. We are thankful to the anonymous referee for his/her 
detailed comments for the improvement of this article.

References

[1] J.M. Barrett, M. Lupini, J. Moreira, On Rado conditions for nonlinear Diophantine equations, Eur. 
J. Comb. 94 (2021) 103277.

[2] M. Beiglböck, A variant of the Hales–Jewett theorem, Bull. Lond. Math. Soc. 40 (2008) 210–216.
[3] M. Beiglböck, V. Bergelson, N. Hindman, D. Strauss, Some new results in multiplicative and additive 

Ramsey theory, Trans. Am. Math. Soc. 360 (2008) 819–847.
[4] V. Bergelson, Multiplicatively large sets and ergodic Ramsey theory, Isr. J. Math. 148 (2005) 23–40.
[5] V. Bergelson, IP sets, dynamics, and combinatorial number theory, in: V. Bergelson, A. Blass, M. 

Di Nasso, R. Jin (Eds.), Ultrafilters Across Mathematics, in: Contemp. Math., vol. 530, AMS, 2010, 
pp. 23–47.

[6] V. Bergelson, J.H. Johnson Jr., J. Moreira, New polynomial and multidimensional extensions of 
classical partition results, J. Comb. Theory, Ser. A 147 (2017) 119–154.

[7] V. Bergelson, A. Leibman, Set-polynomials and polynomial extension of the Hales-Jewett Theorem, 
Ann. Math. 150 (1999) 33–75.

[8] W. Deuber, Partitionen und lineare Gleichungssysteme, Math. Z. 133 (1973) 109–123.
[9] M. Di Nasso, Infinite monochromatic patterns in the integers, J. Comb. Theory, Ser. A 189 (2022) 

105610.
[10] M. Di Nasso, M. Ragosta, Monochromatic exponential triples: an ultrafilter proof, Proc. Am. Math. 

Soc. 152 (2024) 81–87.
[11] M. Di Nasso, M. Ragosta, Central sets and infinite monochromatic exponential patterns, arXiv :

2211 .16269.
[12] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Uni-

versity Press, Princeton, N.J., 1981.
[13] S. Goswami, L. Luperi Baglini, S.K. Patra, Exponential ultrafilters and patterns in Ramsey theory, 

arXiv :2308 .02807v2.
[14] S. Goswami, Large recurrence of the polynomial Van der Waerden’s theorem and its application to 

monochromatic exponential patterns, arXiv :2401 .10550.
[15] A.W. Hales, R.I. Jewett, Regularity and positional games, Trans. Am. Math. Soc. 106 (1963) 

222–229.
[16] N. Hindman, Finite sums from sequences within cells of partitions of N, J. Comb. Theory, Ser. A 

17 (1974) 1–11.
[17] N. Hindman, Monochromatic sums equal to products in N, Integers 11A (2011), #A10.
[18] N. Hindman, R. McCutcheon, Weak VIP systems in commutative semigroups, Topol. Proc. 24 

(1999) 199–221.
[19] N. Hindman, D. Strauss, Algebra in the Stone-Čech Compactifications: Theory and Applications, 

second edition, de Gruyter, Berlin, 2012.
[20] J. Moreira, Monochromatic sums and products in N, Ann. Math. 185 (2017) 1069–1090.
[21] J. Sahasrabudhe, Exponential patterns in arithmetic Ramsey theory, Acta Arith. 182 (1) (2018) 

13–42.
[22] J. Sahasrabudhe, Monochromatic solutions to systems of exponential equations, J. Comb. Theory, 

Ser. A 158 (2018) 548.
[23] I. Schur, Über die Kongruenz xm + ym ≡ zm(mod p), Jahresber. Dtsch. Math.-Ver. 25 (1916) 

114–117.
[24] A. Sisto, Exponential triples, Electron. J. Comb. 18 (2011) 147.
[25] B. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskd. 19 (1927) 212–216.
[26] M. Walters, Combinatorial proofs of polynomial van der Warden and polynomial Hales-Jewett 

theorem, J. Lond. Math. Soc. 61 (2000) 1–12.

http://refhub.elsevier.com/S0007-4497(24)00033-2/bibA58478A01BEB071F5B31324C7ABCCE1Cs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibA58478A01BEB071F5B31324C7ABCCE1Cs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib09E7F289375040D64E88CD4EBBCC389Cs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibEDCAA086F984C30E957935263814D232s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibEDCAA086F984C30E957935263814D232s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib4F0769177CC53F4DB9EE23B1229C77D0s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib9FDEBEB8242807F1158B2870478DE8D5s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib9FDEBEB8242807F1158B2870478DE8D5s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib9FDEBEB8242807F1158B2870478DE8D5s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib8FC295076BF886C567309B4CECD66406s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib8FC295076BF886C567309B4CECD66406s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib5CCD563D0F716C309DF53229000AD62Cs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib5CCD563D0F716C309DF53229000AD62Cs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib8C4ED53C3CEAADB9585F5CACE9B1CA95s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib9BF3323D0AAD0D0CBC1CB0BBB1529C0Fs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib9BF3323D0AAD0D0CBC1CB0BBB1529C0Fs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibCF8A5FEFC196458914AD4A1B79857EA7s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibCF8A5FEFC196458914AD4A1B79857EA7s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibB4A19E94A323ABD25865096EE556C060s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibB4A19E94A323ABD25865096EE556C060s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib77D9603C1228BF8AD045195418979E65s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib77D9603C1228BF8AD045195418979E65s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibB0AB0254BD58EB87EAEE3172BA49FEFBs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibB0AB0254BD58EB87EAEE3172BA49FEFBs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibB2F5FF47436671B6E533D8DC3614845Ds1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibB2F5FF47436671B6E533D8DC3614845Ds1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib429E0173ADDEAD3F5ED34035F4AC02ABs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib429E0173ADDEAD3F5ED34035F4AC02ABs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibA678585E4B12FDDA4131640CF0DED2DCs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibA678585E4B12FDDA4131640CF0DED2DCs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib396781EFA180F9C8FDFF7B29D49BDAEBs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib2B9ED9314C9B75F085FCF7356337D30Bs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib2B9ED9314C9B75F085FCF7356337D30Bs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibA27C53DDF5B9C7BE6A0C1C14675ECAEEs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibA27C53DDF5B9C7BE6A0C1C14675ECAEEs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib21AF6B8B5E2244835679BBDBE0AB03A6s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib8DDF878039B70767C4A5BCF4F0C4F65Es1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib8DDF878039B70767C4A5BCF4F0C4F65Es1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibFAC989447CAD2EDBC89FBCBA70003B36s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibFAC989447CAD2EDBC89FBCBA70003B36s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibD54185B71F614C30A396AC4BC44D3269s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibD54185B71F614C30A396AC4BC44D3269s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib03C7C0ACE395D80182DB07AE2C30F034s1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bibCACD85471987D51EA0BE0D0D852F6DFBs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib80705EE2B93C8508068023DE12B4C3AFs1
http://refhub.elsevier.com/S0007-4497(24)00033-2/bib80705EE2B93C8508068023DE12B4C3AFs1

	Polynomial extension of some symmetric partition regular structures
	1 Introduction
	2 Preliminaries
	2.1 Hales-Jewett theorem
	2.2 Preliminaries of the algebra of ultrafilters
	2.3 A new symmetric operation

	3 Polynomial extension of symmetric configurations
	3.1 Symmetric version of the monochromatic geo-arithmetic progressions
	3.2 Symmetric version of the polynomial Van der Waerden’s theorem
	3.3 Symmetric version of the polynomial Deuber’s theorem

	4 A new approach to additive and multiplicative operation
	4.1 A new additive operation
	4.2 A new multiplicative operation

	Declaration of competing interest
	Data availability
	Acknowledgements
	References


